CaM kinase Iα–induced phosphorylation of Drp1 regulates mitochondrial morphology

نویسندگان

  • Xiao-Jian Han
  • Yun-Fei Lu
  • Shun-Ai Li
  • Taku Kaitsuka
  • Yasufumi Sato
  • Kazuhito Tomizawa
  • Angus C. Nairn
  • Kohji Takei
  • Hideki Matsui
  • Masayuki Matsushita
چکیده

Mitochondria are dynamic organelles that frequently move, divide, and fuse with one another to maintain their architecture and functions. However, the signaling mechanisms involved in these processes are still not well characterized. In this study, we analyze mitochondrial dynamics and morphology in neurons. Using time-lapse imaging, we find that Ca2+ influx through voltage-dependent Ca2+ channels (VDCCs) causes a rapid halt in mitochondrial movement and induces mitochondrial fission. VDCC-associated Ca2+ signaling stimulates phosphorylation of dynamin-related protein 1 (Drp1) at serine 600 via activation of Ca2+/calmodulin-dependent protein kinase Ialpha (CaMKIalpha). In neurons and HeLa cells, phosphorylation of Drp1 at serine 600 is associated with an increase in Drp1 translocation to mitochondria, whereas in vitro, phosphorylation of Drp1 results in an increase in its affinity for Fis1. CaMKIalpha is a widely expressed protein kinase, suggesting that Ca2+ is likely to be functionally important in the control of mitochondrial dynamics through regulation of Drp1 phosphorylation in neurons and other cell types.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CDK5 phosphorylates DRP1 and drives mitochondrial defects in NMDA-induced neuronal death.

Defects in mitochondrial fission and cyclin dependent kinase 5 (CDK5) activation are early events that precede neuronal loss following NMDA-induced neuronal death. Here, we report that the cytoplasmic CDK5 tightly regulates mitochondrial morphology defects associated with NMDA-induced neuronal injury via regulation of the mitochondrial fission protein, dynamin-related protein 1 (DRP1). We show ...

متن کامل

Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology.

Mitochondria in cells comprise a tubulovesicular reticulum shaped by dynamic fission and fusion events. The multimeric dynamin-like GTPase Drp1 is a critical protein mediating mitochondrial division. It harbors multiple motifs including GTP-binding, middle, and GTPase effector (GED) domains that are important for both intramolecular and intermolecular interactions. As for other members of the d...

متن کامل

NIK/MAP3K14 Regulates Mitochondrial Dynamics and Trafficking to Promote Cell Invasion

Although the role of NF-κB-inducing kinase (NIK) in immunity is well established, its relevance in cancer is just emerging. Here we describe novel functions for NIK in regulating mitochondrial dynamics and motility to promote cell invasion. We show that NIK is localized to mitochondria in cancer cell lines, ex vivo tumor tissue, and mouse embryonic fibroblasts (MEFs). NIK promotes mitochondrial...

متن کامل

Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death.

Opposing mitochondrial fission and fusion reactions determine the shape and interconnectivity of mitochondria. Dynamin-related protein 1 (Drp1) is an ancient mechanoenzyme that uses GTP hydrolysis to power the constriction and division of mitochondria. Although Drp1-mediated mitochondrial fragmentation is recognized as an early event in the apoptotic programme, acute regulation of Drp1 activity...

متن کامل

Response by Arezu JahaniAsl & Ruth S. Slack

emphasize the important roles of protein phosphorylation by cAMP-dependent protein kinase (PKA) in the regulation of the dynamin-related protein 1 (Drp1) GTPase and mitochondrial fission. However, the Literature Report ( Jahani-Asl & Slack, 2007) that accompanied the Cribbs & Strack article led to incorrect interpretations, which we would like to clarify here. Foremost among these, the Literatu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 182  شماره 

صفحات  -

تاریخ انتشار 2008